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In this the window of the Sobolev gradient technique to the problem of minimizing a
Schrödinger functional associated with a nonlinear Schrödinger equation. We show that
gradients act in a suitably chosen Sobolev space (Sobolev gradients) can be used in
finite-difference and finite-element settings in a computationally efficient way to find min-
imum energy states of Schrödinger functionals.
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1. Introduction

Many problems in physics can be formulated in terms of finding critical points of energy functionals. The recent theory of
Sobolev gradients [1] provides a unified point of view on such problems, both in function spaces and in finite dimensional
approximations to such problems. Sobolev gradients have been used for ODE problems [1,2] in a finite-difference setting,
PDEs in finite-difference [2] and finite-element settings [3], minimizing energy functionals associated with Landau–Ginzburg
models in finite-difference [4] and finite-element [5,6] settings, the electrostatic potential equation [7], nonlinear elliptic
problems [8], semilinear elliptic systems [9], simulation of Bose–Einstein condensates [10], and inverse problems in elastic-
ity [11] and groundwater modeling [12]. The Sobolev gradient technique has been discussed previously for minimizing
Schrödinger functionals in Fourier space setting [13]. In this article a Sobolev gradient method in finite-difference setting
and finite-element setting is discussed for minimizing Schrödinger functionals.

A gradient of a functional gives the direction of change per unit change in the argument of the functional. The direction of
a gradient strongly depends on how the size of arguments of a functional are measured. Schrödinger functionals include
derivatives of the arguments. Such arguments have to be considered large if some of its derivatives are large. Theoretical
considerations of such functionals must take this into account and is often overlooked in numerical approximations. The the-
ory of Sobolev gradient [1] is an organized account of how to choose a metric for a finite dimensional problem related to an
infinite dimensional theoretical problem. It is found that a good choice leads to gradients (Sobolev gradients) which are con-
siderably smoother than those normally used [14].

For the model we studied, the Sobolev gradient technique becomes increasingly attractive as grid spacing is refined, and
accordingly, dimension is increased.

In this paper, we briefly consider the theory of Sobolev gradients as applied to minimizing a free energy functional in fi-
nite-difference and finite-element setting. This theory leads to a steepest descent method in an appropriate Sobolev space
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[4]. We then consider numerical implementation of steepest descent in this Sobolev space for minimizing the Schrödinger
functional associated with a cubic nonlinear Schrödinger equation subject to some constraint in a finite-difference and finite-
element settings. Lastly, soliton solutions are mentioned. For the computational comparison an Intel Pentium 2.8 GHZ dual
core machine with 512 MB RAM was used.

The nonlinear Schrödinger equation [15] is an example of a universal nonlinear model that describes many physical sys-
tems. The nonlinear Schrödinger equation appears in quantum mechanics [16] and is related to the Hamiltonian functional
HðwÞ ¼
Z

V
ajwj4 þ bjwj2 þ jrwj2; ð1Þ
where V is a general bounded region. The coefficients a and b might vary across V and w is a complex field defined on V. This
functional gives rise to the dynamics
iwt ¼ rHðwÞ: ð2Þ
The equation has applications in hydrodynamics, nonlinear optics, nonlinear acoustics, quantum condensates, heat pulses in
solids and various other nonlinear instability phenomena. We are interested in finding soliton solutions of the nonlinear
Schrödinger equation for which wt ¼ 0. The solitary wave (or soliton) is a wave that consists of a single symmetrical hump
that propagates at uniform velocity without changing its shape.
2. Energy minimization associated with Schrödinger functionals

We will study numerical approximations for the system defined by the functional associated with a cubic nonlinear
Schrödinger equation:
/ðwÞ ¼
Z

V

b
4
jwj4 þ 1

2
jrwj2 ð3Þ
subject to the condition
Z
V
jwj2 ¼ N; ð4Þ
where V is a bounded region and N is a constant. w ¼ uþ iv is a complex field in V. Without the above restriction (4) the
absolute minimum of the energy is always reached at the trivial solution w ¼ 0. We will see that (4) defines a subspace T
that we will make use of.

It will be convenient to work with real quantities, so we consider numerical estimation of the minimum of
Fðu;vÞ ¼
Z

V

b
4
ju2 þ v2j2 þ 1

2
ðru2 þrv2Þ: ð5Þ
subject to the condition
Z
V

u2 þ v2 ¼ N; ð6Þ
where N is a positive integer and V is a bounded region in two or three dimensions.

2.1. Finite-difference setting

We now consider numerical approximations to the functional (5) in one, two, and three spatial dimensions.
We will use a uniform grid for all numerical experiments in this paper. We think of the grid as being composed of nodes

and edges which form cells. In one dimension, the cells are adjacent nodes connected by a line segment of length d. In two
dimensions, the cells consist of squares with nodes on the corners joined by line segments of length d. In three dimensions,
the cells are square cubes. We will define operators that estimate the value of a function u and its derivatives on the cell,
given the value of u on the nodes.

We define an operator D0 : RM ! RM�1 in one spatial dimension. This acts on a vector u of M real numbers considered to be
the values of a function on the nodes of the grid and returns a vector D0ðuÞ 2 RM�1 of M � 1 real numbers considered to be
values defined on the cells of the grid. This is done by averaging the values of u on the nodes of the cell.

We use the same name D0 for the operators in two and three spatial dimensions that assign the average of u on the nodes
of the cell to the cell.

In one spatial dimension, define an operator D1 : RM ! RM�1 that takes the difference in u at the two nodes of a cell and
divides by the internodal spacing d to assign an estimated derivative in the x direction to the cell. In two dimensions, D1 takes
the differences between values of u joined by line segments lying in the x direction and averages them on a cell to assign an
estimate of the x derivative to the cell. In three dimensions, D1 averages four differences of u in the x direction.

Operators D2 and D3 are defined analogously for derivatives in the y and z directions.
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A numerical analogue of (5) is
Fðu;vÞ ¼ b
4
hD0ðu2 þ v2Þ;D0ðu2 þ v2Þi þ

Xd

i¼1

1
2
hDiðuÞ;DiðuÞi þ

Xd

i¼1

1
2
hDiðvÞ;DiðvÞi; ð7Þ
where u and v are vectors in RM;RM � RM or RM � RM � RM and d is the spatial dimension of the problem. For the rest of the
paper we will only deal with real vectors.

F is strictly convex so the minimum is unique. We search for the minimum of F using descent techniques modified to ac-
count for the restriction on the norm (6).

The gradients ruF and rvF in L2 ¼ H2
0 (the space of vectors in equipped with the inner product hp; qi ¼

P
pðiÞqðiÞ) for

some functional F can be calculated by
Fðuþ h;v þ kÞ ¼ Fðu;vÞ þ hruF;hi þ hrvF; ki þ Oðh2
; k2Þ ð8Þ
for test functions h and k. The gradients in this space are given by
ruF ¼ buDt
0D0ðu2 þ v2Þ þ

Xd

i¼1

Dt
i DiðuÞ ð9Þ
and
rvF ¼ bvDt
0D0ðu2 þ v2Þ þ

Xd

i¼1

Dt
i DiðvÞ: ð10Þ
The gradient points to the direction of greatest increase of F in the function space L2. So, one could seek to minimize F by
moving u and v one minimization step in the directions �ruF and �rvF, recalculating the gradient, moving one minimiza-
tion step, etc.:

� Calculate ruF and rvF.
� Update u and v by u! u� kruF;v ! v � krvF where k is some fixed positive number.
� Renormalize u and v.
� Repeat.

A line-search technique in which the step-size k varies could be used but here we used a constant step-size in all that
follows.

Consider how changing the vectors u and v in this way changes the value of
P

uðiÞ2 þ vðiÞ2 before the renormalization
step. This differs from the original value N (6) by �kuðiÞruFðiÞ � kvðiÞrvFðiÞ þ Oðk2Þ. We can then renormalize in order to
respect the constraint.

Another approach is to try to make the OðkÞ terms zero. That is, we want to project ruF and rvF onto vectors w and v so
that
hu;wi þ hv;vi ¼ 0: ð11Þ
This way the deviation from the constraint (6) is of order k2. We will call the subspace defined by (11) T. Projecting onto T
does not remove the necessity for renormalization, however it makes the steepest descent process smoother.

The CFL condition [17] says that for stability in such an explicit scheme the step-size k will be less than some number
which depends on the nodal spacing. When the grid is made refined or if we go from one to two or three spatial dimensions
the step-size will have to be reduced. Steepest descent in L2 is easy to understand and to implement, but is increasingly inef-
ficient as grids become finer.

Rather than abandoning the steepest descent, the gradient is reconsidered. The gradient was calculated above in the space
L2 which is RM with the standard inner product h; i. Instead of using the L2 inner product we could define an inner product
space H2

1 which is RM with inner product‘
ðu; vÞ ¼ hD0u;D0vi þ
Xd

i¼1

hDiu;Divi: ð12Þ
The gradient PruF in H2
1 can be found from the gradient ruF in L2 by solving
Dt
0D0 þ

Xd

i¼1

Dt
i Di

 !
PruF ¼ ruF; ð13Þ
where Dt
0 and Dt

1 are the adjoints of D0 and D1. Similarly, solving
Dt
0D0 þ

Xd

i¼1

Dt
i Di

 !
PrvF ¼ rvF ð14Þ
gives PrvF.
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The steepest descent algorithm in this new space is as follows:

� Calculate ru and rvF.
� Project ruF and rvF on to H2

1 by solving (13) and (14).
� Project PruF and PrvF onto the subspace T.
� Update u and v by u! u� kPruF; v ! v � kPrvF where k is some fixed positive number.
� Renormalize u and v.
� Repeat.

For a one-dimensional problem, let the domain V of (5) to be the interval [0,10]. For the two-dimensional problem
V ¼ ½0;10� � ½0;10� and in the three-dimensional problem V ¼ ½0;10� � ½0;10� � ½0;10�.

Numerical experiments for the minimization of the Schrödinger functional as given by (5) with the constraint (6) were
conducted as follows: Systems of M, M2 and M3 nodes were set up with u ¼ sin x and v with random initial values for the
one and two-dimensional cases and u ¼ sin x and v ¼ 0 for the three-dimensional case. The internodal spacing d was the
same in each direction in the two- and three-dimensional cases. The values of b and N were set to 1 and 10 for all the exper-
iments. Minimization was done in L2 and in H2

1. The programs were terminated when the difference between new and old u
and v values was less than 10�6. For the gradients in H2

1 we used the same step-size regardless of the internodal spacing d.
When the grid was refined in L2 the step-size had to be decreased, otherwise the minimization became unstable as predicted
by the CFL condition. The step-sizes reported for minimization in L2 are the largest that could be used for a stable run. The
functional was minimized. The total number of minimization steps, the largest value of k that can be used, the minimum
value of F and CPU time which are given in Tables 1–3.

We note that the finer the spacing, the less CPU time the Sobolev gradient technique uses in comparison to the usual
steepest descent method. The step-size for minimization in L2 has to decrease as the spacing is refined. From the tables
we see that the results in H2

1 are far better than in L2.
The minimum energy states that we have found by the steepest descent technique are solitons since at the minimum

energy the gradient of the functional is zero.

2.2. Finite-element setting

Consider again the functional (5) subject to the constraint (6). It is convenient in the finite-element setting to think in
terms of integrals. We define the L2 inner product as
Table 1
Numerical results of the Sobolev gradients algorithms compared with L2 gradients in the one-dimensional case.

k Iterations CPUs Fðu; vÞ M

L2 H2
1 L2 H2

1 L2 H2
1 L2 H2

1

0.0012 0.9 2606 14 0.4527 0.0156 281.84 281.84 201
0.00031 0.9 10032 25 3.0445 0.0312 281.89 281.89 401
0.000078 0.9 40041 58 29.67 0.2652 281.9 281.9 801
0.000018 0.9 173096 134 268.3 1.311 281.91 281.91 1601

Table 2
Numerical results of the Sobolev gradients algorithms compared with L2 gradients in the two-dimensional case.

k Iterations CPUs Fðu;vÞ M

L2 H2
1 L2 H2

1 L2 H2
1 L2 H2

1

0.18 0.9 2895 7 13.25 0.1092 43.05 43.03 51
0.092 0.9 9235 7 168.37 0.5775 48.93 48.93 101
0.048 0.9 25995 8 1741.2 2.513 57.43 57.23 201
0.018 0.9 >17444 10 >5394 15.234 69.6 68.56 401

Table 3
Numerical results of the Sobolev gradients algorithms compared with L2 gradients in the three-dimensional case.

k Iterations CPUs Fðu; vÞ M

L2 H2
1 L2 H2

1 L2 H2
1 L2 H2

1

0.12 0.9 763 8 21.53 1.048 8.514 8.516 21
0.031 0.9 2080 10 422.75 10.694 8.542 8.544 41
0.0075 0.9 >2635 27 >5394 331.68 8.549 8.55 81
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L2

0.1
0.01
0.003

Table 5
Numeri

k

L2

0.01
0.002
0.00005
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hf ; gi ¼
Z

V
fg ð15Þ
and the H2
1 inner product as
hf ; giS ¼ hf ; gi þ hfx; gxi þ hfy; gyi: ð16Þ
This inner product takes spatial gradients into account, unlike inner product in L2. The L2 gradientsruF andrvF can be found
by
Fðuþ h;v þ kÞ ¼ Fðu;vÞ þ hruF;hi þ hrvF; ki þ Oðh2
; k2Þ: ð17Þ
The Sobolev gradients PruF and PrvF can be found by
Fðuþ h;v þ kÞ ¼ Fðu;vÞ þ hPruF;hi þ hPrvF; ki þ hPruFx;hxi þ hPruFy;hyi þ hPrvFx; kxi þ hPrvFy; kyi þ Oðh2
; k2Þ:
ð18Þ
For our particular problem, we need to solve
Z
V

buðu2 þ v2Þhþ
Z

V
ru � rh ¼

Z
V

PruFhþ
Z

V
rPruF � rh ð19Þ
and
 Z
V

bvðu2 þ v2Þkþ
Z

V
rv � rk ¼

Z
V

PrvFkþ
Z

V
rPrvF � rk ð20Þ
in order to find the Sobolev gradients. Note that in the finite-element setting it is not necessary to find the L2 gradient first
and then find the Sobolev gradient next. The software we used can find the different gradients by solving (17) and (18)
directly.

The steepest descent algorithm is as follows:

� Calculate PruF and PrvF from (18).
� Project PruF and PrvF onto the subspace T.
� Update u and v by u;v ! u; v � kPruF; PrvF where k is some fixed positive number.
� Renormalize u and v.
� Repeat.

In the two-dimensional case we let V be the circular disk centered at the origin of radius 10 with an oval region removed
that has border xðtÞ ¼ 8 cosðtÞ; yðtÞ ¼ 2 sinðtÞ with t 2 ½0;2p�. The initial state was u ¼ sin x and v ¼ cos y. The program was
terminated when the difference between new and old u and v values was less than 10�6.

We used the free finite-element software FreeFem++ [18] for this problem. FreeFem++ requires one to specify the borders
of the region and the number of nodes required on each border. The software then creates a mesh. We did numerical exper-
iments with M = 10, 20 and 30 nodes on each border. The energy was minimized using steepest descent steps with both L2

and H2
1. Comparisons of the step-size, number of steps and CPU time are given in Table 4.

Similarly, for the three-dimensional case we let V be the ball centered at the origin of radius 8. The initial state was set up
u ¼ sin x and v ¼ cos y. The program was terminated when the difference between new and old u and v values was less than
10�6.
cal results of the Sobolev gradients algorithms compared with L2 gradients in the two-dimensional case.

Iterations CPUs FðwÞ M Triangles

H2
1 L2 H2

1 L2 H2
1 L2 H2

1 – –

0.9 243 38 66.15 10.41 25.81 25.794 10 20
0.9 1508 77 5453.7 282.9 27.03 26.551 20 88
0.9 >314 137 >5963 2511.1 57.9374 25.72 30 198

cal results of the Sobolev gradient algorithms compared with L2 gradients in the three-dimensional case.

Iterations CPUs FðwÞ M

H2
1 L2 H2

1 L2 H2
1 L2 H2

1

0.6 1169 39 26.14 1.4 3.125 3.1255 5
0.6 3681 37 1178.2 15.9 18.366 18.366 10
0.6 >6101 92 >1984 51.2 51.2 51.2 15



N. Raza et al. / Journal of Computational Physics 228 (2009) 2572–2577 2577
We used the free finite-element software FreeFem3d [18] for this problem. FreeFem3d requires one to specify the number
of nodes on each axis. The software then creates a mesh. We did numerical experiments with M = 5, 10 and 15 nodes on each
axis. We minimized the energy using steepest descent steps with both L2 and H2

1 and compared the step-size, number of
steps and CPU time in Table 5.

We see that as the mesh becomes finer, i.e. M increases, the step-size k needs to decrease drastically whereas this is not
the case for the Sobolev gradient, and accordingly, the number of required iterations does not substantially increase either. In
the two-dimensional case for M ¼ 30 the minimization was not finished at 324 steps using the L2 gradient but concluded
after 137 steps using the Sobolev gradient. In the three-dimensional case for M ¼ 15 the minimization was not finished
at 6101 steps using the L2 gradient but concluded after 92 steps using the Sobolev gradient.

3. Summary and conclusions

A Sobolev gradient scheme has been developed for both finite-difference and finite-element settings for the energy min-
imization of Nonlinear Schrödinger functionals. The Sobolev gradient technique is computationally more efficient than the
usual steepest descent method as the spacing of the numerical grid is made finer and the dimension of the problem is
increased.
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